Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.222
Filtrar
1.
Curr Issues Mol Biol ; 46(4): 3394-3407, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38666943

RESUMO

Nowadays, the explosion of knowledge in the field of epigenetics has revealed new pathways toward the treatment of multifactorial diseases, rendering the key players of the epigenetic machinery the focus of today's pharmaceutical landscape. Among epigenetic enzymes, DNA methyltransferases (DNMTs) are first studied as inhibition targets for cancer treatment. The increasing clinical interest in DNMTs has led to advanced experimental and computational strategies in the search for novel DNMT inhibitors. Considering the importance of epigenetic targets as a novel and promising pharmaceutical trend, the present study attempted to discover novel inhibitors of natural origin against DNMTs using a combination of structure and ligand-based computational approaches. Particularly, a pharmacophore-based virtual screening was performed, followed by molecular docking and molecular dynamics simulations in order to establish an accurate and robust selection methodology. Our screening protocol prioritized five natural-derived compounds, derivatives of coumarins, flavones, chalcones, benzoic acids, and phenazine, bearing completely diverse chemical scaffolds from FDA-approved "Epi-drugs". Their total DNMT inhibitory activity was evaluated, revealing promising results for the derived hits with an inhibitory activity ranging within 30-45% at 100 µM of the tested compounds.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38638103

RESUMO

DNA-encoded libraries (DELs) have demonstrated to be one of the most powerful technologies within the ligand identification toolbox, widely used either in academia or biotech and pharma companies. DEL methodology utilizes affinity selection (AS) as the approach to interrogate the protein of interest for the identification of binders. Here we present a high-throughput, fully automated AS platform developed to fulfill industrial standards and compatible with different assay formats to improve the reproducibility of the AS process for DEL binders identification. This platform is flexible enough to virtually set aside all kinds of DELs and AS methods and conditions using immobilized proteins. It bears the two main immobilization methods to support of the proteins of interest: magnetic beads or resin tip columns. A combination of a broad variety of protocol options with a wide range of different experimental conditions can be set up with a throughput of 96 samples at the same time. In addition, small modifications of the protocols provide the platform with the versatility to run not only the routine DEL screens, but also test covalent libraries, the successful immobilization of the proteins of interest, and many other experiments that may be required. This versatile AS platform for DEL can be a powerful instrument for direct application of the technology in academic and industry settings.

3.
PeerJ ; 12: e17143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618563

RESUMO

Phage display technology has become an important research tool in biological research, fundamentally changing the traditional monoclonal antibody preparation process, and has been widely used in the establishment of antigen-antibody libraries, drug design, vaccine research, pathogen detection, gene therapy, antigenic epitope research, and cellular signal transduction research.The phage display is a powerful platform for technology development. Using phage display technology, single chain fragment variable (scFv) can be screened, replacing the disadvantage of the large size of traditional antibodies. Phage display single chain antibody libraries have significant biological implications. Here we describe the types of antibodies, including chimeric antibodies, bispecific antibodies, and scFvs. In addition, we describe the phage display system, phage display single chain antibody libraries, screening of specific antibodies by phage libraries and the application of phage libraries.


Assuntos
Anticorpos Biespecíficos , Bacteriófagos , Anticorpos de Cadeia Única , Anticorpos de Cadeia Única/genética , Anticorpos Monoclonais , Bacteriófagos/genética , Tecnologia
4.
Mol Ther Methods Clin Dev ; 32(2): 101241, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38585687

RESUMO

While recombinant adenoviruses (rAds) are widely used in both laboratory and medical gene transfer, library-based applications using this vector platform are not readily available. Recently, we developed a new method, the CRISPR-Cas9 mediated in vivo terminal resolution aiding high-efficiency rescue of rAds from recombinant DNA. Here we report on a genetic workflow that allows construction of bacterial artificial chromosome-based rAd libraries reconstituted using highly efficient terminal resolution. We utilized frequent, pre-existing genomic sequences to allow the insertion of a selection marker, complementing two selected target sites into novel endonuclease recognition sites. In the second step, this selection marker is replaced with a transgene or mutation of interest via Gibson assembly. Our approach does not cause unwanted genomic off-target mutations while providing substantial flexibility for the site and nature of the genetic modification. This new genetic workflow, which we termed half site-directed fragment replacement (HFR) allows the introduction of more than 106 unique modifications into rAd encoding BACs using laboratory scale methodology. To demonstrate the power of HFR, we rescued barcoded viral vector libraries yielding a diversity of approximately 2.5 × 104 unique rAds per cm2 of transfected cell culture.

5.
J Pept Sci ; : e3600, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623834

RESUMO

Agricultural crops are targeted by various pathogens (fungi, bacteria, and viruses) and pests (herbivorous arthropods). Antimicrobial and insecticidal peptides are increasingly recognized as eco-friendly tools for crop protection due to their low propensity for resistance development and the fact that they are fully biodegradable. However, historical challenges have hindered their development, including poor stability, limited availability, reproducibility issues, high production costs, and unwanted toxicity. Toxicity is a primary concern because crop-protective peptides interact with various organisms of environmental and economic significance. This review focuses on the potential of genetically encoded peptide libraries like the use of two-hybrid-based methods for antimicrobial peptides identification and insecticidal spider venom peptides as two main approaches for targeting plant pathogens and pests. We discuss some key findings and challenges regarding the practical application of each strategy. We conclude that genetically encoded peptide library- and spider venom-derived crop protective peptides offer a sustainable and environmentally responsible approach for addressing modern crop protection needs in the agricultural sector.

6.
J Proteome Res ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666436

RESUMO

Data-independent acquisition (DIA) has become a well-established method for MS-based proteomics. However, the list of options to analyze this type of data is quite extensive, and the use of spectral libraries has become an important factor in DIA data analysis. More specifically the use of in silico predicted libraries is gaining more interest. By working with a differential spike-in of human standard proteins (UPS2) in a constant yeast tryptic digest background, we evaluated the sensitivity, precision, and accuracy of the use of in silico predicted libraries in data DIA data analysis workflows compared to more established workflows. Three commonly used DIA software tools, DIA-NN, EncyclopeDIA, and Spectronaut, were each tested in spectral library mode and spectral library-free mode. In spectral library mode, we used independent spectral library prediction tools PROSIT and MS2PIP together with DeepLC, next to classical data-dependent acquisition (DDA)-based spectral libraries. In total, we benchmarked 12 computational workflows for DIA. Our comparison showed that DIA-NN reached the highest sensitivity while maintaining a good compromise on the reproducibility and accuracy levels in either library-free mode or using in silico predicted libraries pointing to a general benefit in using in silico predicted libraries.

7.
Methods Mol Biol ; 2768: 29-50, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502386

RESUMO

The analysis of antigen-specific T-cell responses has become routine in many laboratories. Functional T-cell assays like enzyme-linked-immuno-spot (ELISPOT), which depend on antigen-specific stimulation, increasingly use peptides to represent the antigen of interest. Besides single peptides, mixtures of peptides (peptide pools) are very frequently applied. Such peptide pools may, for example, represent entire proteins (with overlapping peptides covering a protein sequence) or include noncontiguous peptides such as a collection of T-cell-stimulating peptides. The optimum specification of single peptides or peptide pools for T-cell stimulation assays will depend on the purpose of the test, the target T-cell population, the availability of sample, requirements regarding reproducibility, and, last but not least, the available budget, to mention only the most important factors. Because of the way peptides are produced, they will always contain certain amounts of impurities such as peptides with deletions or truncated peptides, and there may be additional by-products of peptide synthesis. Optimized synthesis protocols as well as purification help reduce impurities that might otherwise cause false-positive assay results. However, specific requirements with respect to purity will vary depending on the purpose of an assay. Finally, storage conditions significantly affect the shelf life of peptides, which is relevant especially for longitudinal studies. The present book chapter addresses all of these aspects in detail. It should provide the researcher with all necessary background knowledge for making the right decisions when it comes to choosing, using, and storing peptides for ELISPOT and other T-cell stimulation assays.


Assuntos
Peptídeos , Linfócitos T , Sequência de Aminoácidos , Reprodutibilidade dos Testes
8.
Angew Chem Int Ed Engl ; : e202320045, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38529717

RESUMO

In the realm of high-throughput screening (HTS), macrocyclic peptide libraries traditionally necessitate decoding tags, essential for both library synthesis and identifying hit peptide sequences post-screening. Our innovation introduces a tag-free technology platform for synthesizing cyclic peptide libraries in solution and facilitates screening against biological targets to identify peptide binders through unconventional intramolecular CyClick and DeClick chemistries (CCDC) discovered through our research. This combination allows for the synthesis of diverse cyclic peptide libraries, the incorporation of various amino acids, and facile linearization and decoding of cyclic peptide binder sequences. Our sensitivity-enhancing derivatization method, utilized in tandem with nano LC-MS/MS, enables the sequencing of peptides even at exceedingly low picomolar concentrations. Employing our technology platform, we have successfully unearthed novel cyclic peptide binders against a monoclonal antibody and the first cyclic peptide binder of HIV capsid protein responsible for viral infections as validated by microscale thermal shift assays (TSA), biolayer interferometry (BLI) and functional assays.

9.
Appl Spectrosc ; : 37028241233307, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38444222

RESUMO

The post-World War II availability of commercial spectrometers spurred the development of professional spectroscopic societies: The Infrared and Raman Discussion Group in the UK, the Coblentz Society, and the Society for Applied Spectroscopy in the USA. There was a desire to ensure that customers understood the instrumentation and techniques, became part of a community, and had access to the latest subject matter knowledge. With the advent of low-cost routine instruments, and portable instruments in the field, professional societies have a distinct role to play in education and training, especially as libraries deaccession (withdraw) even comparatively recent books on practical spectroscopy.

10.
Methods Mol Biol ; 2793: 21-40, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38526721

RESUMO

Phage display antibody libraries have been successfully used as the essential tool to produce monoclonal antibodies against a plethora of targets ranging from diseases to native biologically important proteins as well as small molecules. It is well documented that diverse antibody genes are the major genetic source for the construction of a high-quality antibody library and selection of high-affinity antibodies. Naïve antibody libraries are derived using the IgM repertoire of healthy donors obtained from B-cells isolated from human peripheral blood mononuclear cell (PBMC). Single-chain fragment variable (scFv) is a routinely used format due to its smaller size and preference for phage display. The process involves the use of a two-step cloning method for library construction. The protocol also covers the biopanning process for target positive clone selection.


Assuntos
Bacteriófagos , Anticorpos de Cadeia Única , Humanos , Biblioteca de Peptídeos , Leucócitos Mononucleares , Técnicas de Visualização da Superfície Celular , Anticorpos Monoclonais , Bacteriófagos/genética , Anticorpos de Cadeia Única/genética
11.
Trends Biochem Sci ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38531696

RESUMO

Gene delivery vehicles based on adeno-associated viruses (AAVs) are enabling increasing success in human clinical trials, and they offer the promise of treating a broad spectrum of both genetic and non-genetic disorders. However, delivery efficiency and targeting must be improved to enable safe and effective therapies. In recent years, considerable effort has been invested in creating AAV variants with improved delivery, and computational approaches have been increasingly harnessed for AAV engineering. In this review, we discuss how computationally designed AAV libraries are enabling directed evolution. Specifically, we highlight approaches that harness sequences outputted by next-generation sequencing (NGS) coupled with machine learning (ML) to generate new functional AAV capsids and related regulatory elements, pushing the frontier of what vector engineering and gene therapy may achieve.

12.
Curr HIV Res ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532605

RESUMO

BACKGROUND: The research and development of HIV drugs is very important, but at the same time it is a long cycle and expensive system project. High-throughput drug screening systems and molecular libraries of potential hit compounds remain the main ways for the discovery of hit compounds with anti-HIV activity. OBJECTIVE: The aim of this study was to screen out the hit compounds against HIV-1 in the natural product molecule library and the antiviral molecule library, and elucidate the molecular mechanism of their inhibition of HIV-1, so as to provide a new choice for AIDS drug research. METHODS: In this study, a drug screening system using HIV Rev-dependent indicator cell line (Rev-A3R5-GFP reporter cells) with pseudoviruses (pNL4-3) was used. The natural drug molecule library and antiviral molecule library were screened, and preliminary drug mechanism studies were performed. RESULTS: Ten promising hit compounds were screened. These ten molecules and their drug inhibitory IC50 were as follows: Cephaeline (0.50 µM), Yadanziolide A (8.82 µM), Bruceine D (2.48 µM), Astragaloside IV (4.30 µM), RX-3117 (1.32 µM), Harringtonine (0.63 µM), Tubercidin (0.41 µM), Theaflavine-3, 3'-digallate (0.41 µM), Ginkgetin (10.76 µM), ZK756326 (5.97 µM). The results of the Time of additions showed that except for Astragaloside IV and Theaflavine-3, 3'-digallate had a weak entry inhibition effect, and it was speculated that all ten compounds had an intracellular inhibition effect. Cephaeline, Harringtonine, Astragaloside IV, Bruceine D, and Tubercidin may have pre-reverse transcriptional inhibition. Yadanziolide A, Theaflavine-3, 3'-digallate, Ginkgetin and RX-3117 may be in the post-reverse transcriptional inhibition. The inhibitory effect of ZK 75632 may be in the reverse transcriptional process. CONCLUSION: A drug screening system using Rev-A3R5-GFP reporter cells with pseudoviruses (pNL4-3) is highly efficient. This study provided potential hit compounds for new HIV drug research.

13.
Sci Rep ; 14(1): 7022, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528042

RESUMO

In the evolving landscape of smart libraries, this research pioneers an IoT-based low-cost architecture utilizing Software-Defined Networking (SDN). The increasing demand for more efficient and economical solutions in library management, particularly in the realm of RFID-based processes such as authentication, property circulation, and book loans, underscores the significance of this study. Leveraging the collaborative potential of IoT and SDN technologies, our proposed system introduces a fresh perspective to tackle these challenges and advance intelligent library management. In response to the evolving landscape of smart libraries, our research presents an Internet of Things (IoT)-based low-cost architecture utilizing SDN. The exploration of this architectural paradigm arises from a recognized gap in the existing literature, pointing towards the necessity for more efficient and cost-effective solutions in managing library processes. Our proposed algorithm integrates IoT and SDN technologies to intelligently oversee various library activities, specifically targeting RFID-based processes such as authentication, property circulation management, and book loan management. The system's architecture, encompasses components like the data center, SDN controllers, RFID tags, tag readers, and other network sensors. By leveraging the synergy between RFID and SDN, our innovative approach reduces the need for constant operator supervision in libraries. The scalability and software-oriented nature of the architecture cater to extensive library environments. Our study includes a two-phase investigation, combining practical implementation in a small-scale library with a simulation environment using MATLAB 2021. This research not only fills a crucial gap in current knowledge but also lays the foundation for future advancements in the integration of IoT and SDN technologies for intelligent library management.

14.
Angew Chem Int Ed Engl ; 63(12): e202319836, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38330151

RESUMO

DNA encoded library (DEL) synthesis represents a convenient means to produce, annotate and store large collections of compounds in a small volume. While DELs are well suited for drug discovery campaigns, the chemistry used in their production must be compatible with the DNA tag, which can limit compound class accessibility. As a result, most DELs are heavily populated with peptidomimetic and sp2 -rich molecules. Herein, we show that sp3 -rich mono- and bicyclic heterocycles can be made on DNA from ketochlorohydrin aldol products through a reductive amination and cyclization process. The resulting hydroxypyrrolidines possess structural features that are desirable for DELs and target a distinct region of pharmaceutically relevant chemical space.


Assuntos
DNA , Bibliotecas de Moléculas Pequenas , Bibliotecas de Moléculas Pequenas/química , DNA/química , Biblioteca Gênica , Descoberta de Drogas/métodos , Aminação
15.
Appl Microbiol Biotechnol ; 108(1): 190, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305911

RESUMO

Metabolic engineering frequently makes use of point mutation and saturation mutation library creation. At present, sequencing is the only reliable and direct technique to detect point mutation and screen saturation mutation library. In this study, mismatch amplification mutation assay (MAMA) PCR was used to detect point mutation and screen saturation mutation library. In order to fine-tune the expression of odhA encoding 2-oxoglutarate dehydrogenase E1 component, a saturating mutant library of the RBS of odhA was created in Corynebacterium glutamicum P12 based on the CRISPR-Cas2a genome editing system, which increased the L-proline production by 81.3%. MAMA PCR was used to filter out 42% of the non-mutant transformants in the mutant library, which effectively reduced the workload of the subsequent fermentation test and the number of sequenced samples. The rapid and sensitive MAMA-PCR method established in this study provides a general strategy for detecting point mutations and improving the efficiency of mutation library screening. KEY POINTS: • MAMA PCR was optimized and developed to detect point mutation. • MAMA PCR greatly improves the screening efficiency of point mutation. • Attenuation of odhA expression in P12 effectively improves proline production.


Assuntos
Corynebacterium glutamicum , Mutação Puntual , Mutação , Sequência de Bases , Corynebacterium glutamicum/genética , Reação em Cadeia da Polimerase/métodos
16.
Appl Microbiol Biotechnol ; 108(1): 197, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324086

RESUMO

Komagataella phaffii, a nonconventional yeast, is increasingly attractive to researchers owing to its posttranslational modification ability, strict methanol regulatory mechanism, and lack of Crabtree effect. Although CRISPR-based gene editing systems have been established in K. phaffii, there are still some inadequacies compared to the model organism Saccharomyces cerevisiae. In this study, a redesigned gRNA plasmid carrying red and green fluorescent proteins facilitated plasmid construction and marker recycling, respectively, making marker recycling more convenient and reliable. Subsequently, based on the knockdown of Ku70 and DNA ligase IV, we experimented with integrating multiple DNA fragments at a single locus. A 26.5-kb-long DNA fragment divided into 11 expression cassettes for lycopene synthesis could be successfully integrated into a single locus at one time with a success rate of 57%. A 27-kb-long DNA fragment could also be precisely knocked out with a 50% positive rate in K. phaffii by introducing two DSBs simultaneously. Finally, to explore the feasibility of rapidly balancing the expression intensity of multiple genes in a metabolic pathway, a yeast combinatorial library was successfully constructed in K. phaffii using lycopene as an indicator, and an optimal combination of the metabolic pathway was identified by screening, with a yield titer of up to 182.73 mg/L in shake flask fermentation. KEY POINTS: • Rapid marker recycling based on the visualization of a green fluorescent protein • One-step multifragment integration and large fragment knockout in the genome • A random assembly of multiple DNA elements to create yeast libraries in K. phaffii.


Assuntos
Sistemas CRISPR-Cas , Saccharomycetales , DNA , Proteínas de Fluorescência Verde , Licopeno , RNA Guia de Sistemas CRISPR-Cas
17.
Bioorg Med Chem ; 99: 117596, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38232459

RESUMO

Codification of DNA Encoded Libraries (DELs) is critical for successful ligand identification of molecules that bind a protein of interest (POI). There are different encoding strategies that permit, for instance, the customization of a DEL for testing single or dual pharmacophores (single strand DNA) or for producing and screening large diversity libraries of small molecules (double strand DNA). Both approaches challenges, either from the synthetic and encoding point of view, or from the selection methodology to be utilized for the screening. The Head-Piece contains the DNA sequence that is attached to a chemical compound, allowing the encoding of each molecule with a unique DNA tag. Designing the Head-Piece for a DNA-encoded library involves careful consideration of several key aspects including DNA barcode identity, sequence length and attachment chemistry. Here we describe a double stranded DNA versatile Head-Piece that can be used for the generation of single or dual pharmacophore libraries, but also shows other advanced DEL functionalities, stability and enlarged encoding capacity.


Assuntos
Descoberta de Drogas , Bibliotecas de Moléculas Pequenas , Descoberta de Drogas/métodos , Bibliotecas de Moléculas Pequenas/química , DNA/química , Biblioteca Gênica , DNA de Cadeia Simples
18.
Chemistry ; 30(21): e202400239, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38251309

RESUMO

DNA-encoded libraries (DELs) have become a leading technology for hit identification in drug discovery projects as large, diverse libraries can be generated. DELs are commonly synthesised via split-and-pool methodology; thus, chemical transformations utilised must be highly efficient, proceeding with high conversions. Reactions performed in DEL synthesis also require a broad substrate scope to produce diverse, drug-like libraries. Many pharmaceutical compounds incorporate multiple C-N bonds, over a quarter of which are synthesised via reductive aminations. However, few on-DNA reductive amination procedures have been developed. Herein is reported the application of the micelle-forming surfactant, TPGS-750-M, to the on-DNA reductive amination of DNA-conjugated amines, yielding highly efficient conversions with a broad range of aldehydes, including medicinally relevant heterocyclic and aliphatic substrates. The procedure is compatible with DNA amplification and sequencing, demonstrating its applicability to DEL synthesis.


Assuntos
Aminas , Micelas , Aminação , Aminas/química , DNA/química , Replicação do DNA
19.
Med Ref Serv Q ; 43(1): 26-43, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38237018

RESUMO

As academic libraries shift services to meet the changing needs of patrons after the COVID-19 pandemic, educational technologies and services to support them require updating. Patrons using technology that was once associated with hands-on learning and in-person interactions are preferring flexible and hybrid iterations. In this case study, the authors describe and analyze the pivot of three technology services at the Spencer S. Eccles Health Sciences Library in the post-COVID-19 environment. Technologies discussed include a multimedia studio, virtual reality (VR), and a three-dimensional (3D) printing service. This case study utilizes available usage stats and survey data to demonstrate and provide rationale for the changing strategy in services for each technology "hub." The multimedia studio has been dismantled in favor of the equipment being available for checkout, VR is now available in a staff-supported classroom, and a 3D printing service has been fully automated through an online submission platform. These examples, and the rationale behind changing them, can help offer ideas for other libraries to help find solutions that meet the demands of a changing learning environment.


Assuntos
COVID-19 , Bibliotecas Médicas , Humanos , Pandemias , Impressão Tridimensional , Aprendizagem
20.
Health Info Libr J ; 41(1): 4-15, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38200693

RESUMO

BACKGROUND: The emergence of the artificial intelligence chatbot ChatGPT in November 2022 has garnered substantial attention across diverse disciplines. Despite widespread adoption in various sectors, the exploration of its application in libraries, especially within the medical domain, remains limited. AIMS/OBJECTIVES: Many areas of interest remain unexplored like ChatGPT in medical libraries and this review aims to synthesise what is currently known about it to identify gaps and stimulate further research. METHODS: Employing Cooper's integrative review method, this study involves a comprehensive analysis of existing literature on ChatGPT and its potential implementations within library contexts. RESULTS: A systematic literature search across various databases yielded 166 papers, with 30 excluded for irrelevance. After abstract reviews and methodological assessments, 136 articles were selected. Critical Appraisal Skills Programme qualitative checklist further narrowed down to 29 papers, forming the basis for the present study. The literature analysis reveals diverse applications of ChatGPT in medical libraries, including aiding users in finding relevant medical information, answering queries, providing recommendations and facilitating access to resources. Potential challenges and ethical considerations associated with ChatGPT in this context are also highlighted. CONCLUSION: Positioned as a review, our study elucidates the applications of ChatGPT in medical libraries and discusses relevant considerations. The integration of ChatGPT into medical library services holds promise for enhancing information retrieval and user experience, benefiting library users and the broader medical community.


Assuntos
Bibliotecas Médicas , Serviços de Biblioteca , Humanos , Inteligência Artificial , Bases de Dados Factuais , Armazenamento e Recuperação da Informação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...